
Slide of the Seminar  
!

Energy spectra, intermittency and cross-
velocity correlations in superfluid turbulence!

!

Prof. Victor S. L’vov

ERC Advanced Grant (N. 339032) “NewTURB” 
(P.I. Prof. Luca Biferale) !

Università degli Studi di Roma Tor Vergata 
C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, 1 – 00133 ROMA



Energy spectra, intermittency and cross-velocity
correlations in superfluid turbulence

Victor S. Lvov
Weizmann Institute of Science

In collaboration with Anna Pomyalov

ABSTRACT

Turbulence in superfluid helium is unusual and presents a challenge to fluid dynamicists because it

consists of two coupled, inter penetrating turbulent fluids: the first is inviscid with quantized vorticity,

the second is viscous with continuous vorticity. Despite this double nature, the observed spectra of the

superfluid turbulent velocity at sufficiently large length scales are similar to those of ordinary turbulence.

After brief historical overview I will present experimental, numerical and theoretical results which

explain these similarities, and illustrate the limits of our present understanding of superfluid turbulence.
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0.1 Superfluids: experiments and theory

.

.

Heike Kamerlingh-Onnes using this Compressor Piotr Leonidovich Kapitza Jack Allen

hydrogen mixture of 0.2 mole 
fraction helium, maintained at 20 K, the gas 

. and his student

. Donald Missener

.

Nobel prize 1913

”for his investigations on

the properties of matter

at low temperatures which

led, inter alia, to the pro-

duction of liquid helium”.

K-O discovered in 1911

. superconductivity.

.

liquified He at T = 4.2K

in July 10, 1908.

K-O & coworkers in 1924

discovered density change

at T = 2.18K.

Keesom & Wolfke, 1928:

this is a phase transition

. He I ⇔ He II.

.

Nobel prize 1978

”for his basic inventions

and discoveries in the

area of low-temperature

physics”. P.L. Kapitza in

Moscow discovered and

named in 1937

. superfluidity of 4He independently discov-

ered superfluidity in

PLK’s Cambridge lab.
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Lev Davidovich Landau

. Nobel Prize, 1962

”for his pioneering theo-

ries for condensed matter,

especially liquid helium”.

In particular, he quantized

in 1941 the Tisza-1940

two-fluid model and sug-

gested Andronikashvilii’s

1946 experiment on oscil-

lating in He II discs.

Elepter Luarsabovich

. Andronikashvili

. Laszlo

. Tizsa

za 
idity

Its period and damping measures densities

of superfluid, ρs and normal, ρs, components:

.
Andronikashvili experiment

u

u

. Landau-Tizsa two fluid model

for superfluid, Vn, and normal Vs velocities:
Fountain effect    in
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Here: S – entropy, T – temperature and

Fns = Aρnρs(Vs − Vn)
3 is the mutual friction

between superfluid and normal components
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. -
.Douglas D. Osheroff, David M. Lee & Robert C. Richardson

.

.Nobel Prize 1996 ”for their discovery of superfluidity in helium-3”.

.Alexei A. Abrikosov, Vitaly L. Ginzburg, & Anthony J. Leggett

.

.Nobel Prize 2003 ”for pioneering contributions to the theory

.of superconductors and superfluids”

3He, the result of tririum decay, was

produced (150Kg since 1955) and

liquified in LANL. Using Pomer-

anchuk’s compressive cooling D.O,

R.R&D.L discovered superfluidity of
3He on April 20, 1972 at Cornell.

Knowing this before publication, J.

Leggett on Sept. 5, 1972 submited to

PRL explanation of their observations

as Bardeen-Cooper-Schrieffer conden-

sation of Couper pairs of 3He atoms

in the triplet state with the tensorial

ordering parameter. The B-state has

an isotropic gap.

.
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Quantum mechanical description of He II
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0.2 Superfluid Dynamics and Turbulence: Feinmann, Hall-Vinen, Tabeling, . . .

Turbulence in a superfluid was predicted first by Richard Feynman in 1955 and

found experimentally (in counterflow 4He) by Henry Hall and Joe Vinen in 1956.

Consider

1.3.1 Normal fluid vs. superfluid at T → 0 limit:

– Normal fluid kinematic viscosity ν ̸= 0 vs. ν ≡ 0 in superfluids;

– Two scales in normal fluids: Outer scale L and dissipative micro-scale η ≪ L;

– Two additional scales in superfluids due to quantization of vortex lines:

⇓ vortex core diameter a0 ⇓ ⇓ mean inter-vortex distance ℓ ⇓ ⇓ Outer scale D ⇓

v rs
. /d m

a

b

In 4He a0 ≃ 1 Å, in 3He a0 ≃ 800 Å. Experimentally, in both 4He and 3He,Λ ≡ ln
( ℓ

a0

)

≃ 12 ÷ 15
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Sketch of the quantum-turbulence cascades1

abc

Very small scales:

L ≪ ℓ.

Intervortex scales:

L ∼ ℓ

Large scales:
L ≫ ℓ
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Two-fluid hydrodynamic (HD) equations for medium and low temperatures, T ! 0.8K

In the HD region, R ≫ ℓ, one can neglect the quantization of vortex lines and make use coarse-

grained, two fluid Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equation for velocities the superfluid and

normal components us and un, with densities ρs and ρn and pressures ps and pn

ρs
[∂ us

∂t
+ (us∇)us

]

−∇ps = −Fns , ps =
ρs
ρ
[p− ρn|us − un|2] , (1a)

ρn
[∂ un

∂t
+ (un∇)un

]

−∇pn = ρnν∆un + Fns , pn =
ρn
ρ
[p + ρs|us − un|2] , (1b)

coupled by the the mutual friction between superfluid and normal components of the liquid mediated

by quantized vortices which transfer momenta from the superfluid to the normal subsystem and vice

versa:

Fns ≈ α ρsκL(us − un) , L is the vortex line density . (1c)

Eqs (1) are very similar to the Navier-Stokes equation. Therefore in a theory of large-scale superfluid

turbulence we can use numerous tools, developed in the theory of classical HD turbulence, in particular,

direct numerical simulations (DNS) and the differential closure for the energy flux

ε(k) = −
1

8

√

k11 E(k)
d

dk

[E(k)

k2

]

⇒ E(k) = k2
[ 24 ε

11k11/2
+

( T

πρ

)3/2]2/3
. (2)

This solution with the constant energy flux ε(k) = ε gives KO-41 spectrum ∝ k−5/3 for small k end

thermodynamic equilibrium spectrum T/πρ at large k.
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0.3 Kolmogorov spectra in 4He turbulence

Energy spectrum measured in the TOUPIE wind tunnel (Inset) below the superfluid transition (solid

blue line, T = 1.56K and aboveTλ (dashed red line) 1

Right: Numerical energy spectra of the superfluid (solid lines) and normal (dashed lines) component

from two-fluid Eqs. at T = 1.15 K (red) and T = 2.157 K (blue) with truncation of phase space

beyond the intervortex scale 2

1 Salort J, Chabaud B, Lvque E, Roche P-E, Energy cascade and the four-fifths law in superfluid turbulence. Europhys
Lett. 97, 34006 (2012)

2 C. F. Barenghi, V. S. Lvov, and P.-E. Roche, Experimental, numerical, and analytical velocity spectra in turbulent
quantum fluid, Proc Natl Acad Sci USA., 111 46834690 (2014)
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0.4 Intermittency enhancement in 4He turbulence
L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, PRL, 110, 014502 (2013)

Our shell model simulations with eight decades of k-space allowed detailed comparison of classical and

superfluid turbulent statistics in the wide temperature range. A difference between classical and super-

fluid intermittent behavior in a wide (up to three decades) interval of scales was found in the range

0.8Tλ < T < 0.9Tλ, where (ρs ≈ ρn)
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Superfluid (solid lines) and normal fluid (dash

lines) compensated energy spectra k1.72E(k);

the compensation factor is the classical energy

spectrum with intermittency correction.

Inset: k5/3E(k) for T = 0.9Tλ. Shell

model simulation of Eqs. (1) at T/Tλ = 0.99

K(green), 0.9(red) and 0.85(blue), cor-

responding to ρs/ρ = 0.1 , 0.5 , and 0.9

respectively. The vertical dash lines indicate

kℓ ≡ 1/ℓ.

DNS of HVBK two-fluid equations is very important for studies of intermittency effects in superfluid turbulence
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Ladik Skrbek (Prague) channels for the study of counter-flow, super- and co-flow.3

S and N stand for super-fluid and normal components. Counter-flow is produced thermally by a heater.

Super-flow and co-flow are driven mechanically by a bellows.

3 S. Babuin, V.S. L’vov, A. Pomyalov, L. Skrbek and E. Vargag†, Coexistence and interplay of

quantum and classical turbulence of superfluid 4He, arXiv:1509.03765 (Sept. 2015)
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Prague data for the VLD decay L(t)/L(0) in the 7mm co-flow channel
T = 1.35K
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T = 1.45K.
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Quantum t−1-fits – green dashed lines, classical t−3/2-fits – black dash-dotted lines.
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Coexistence of the classical (grey) and quantum (cyan) turbulence in co-flow
Classical energy spectrum consists of cascade part EK41

s (k) ∝ k−5/3

. and thermodynamic equilibrium part ETD

s (k) ∝ k2

Quantum energy spectrum of random tangle has 1/k large k-asymptotics
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Prague data for the VLD decay L(t)/L(0) in 10mm, channel at T = 1.45K
Counter-flow: Quantum t−1-fits – green dashed lines, classical t−3/2-fits – black dash-dotted lines.
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Superflow demonstrates behavior ⇓⇓ very similar to that of counter-flow ⇑⇑
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A way to understand “bump” is to assume delay in the classical-energy supply of quantum tangle
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Normal- (blue) & super-fluid (red) eddies swept by the mean normal- & super-fluid velocities Un & Us

(a) Co-flow, t = −τ (b) Co-flow, t = 0 (c) Co-flow, t = τ
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(d) Counter-flow t = −τ (e) Counter-flow t = 0 (f) Counter-flow t = τ
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Time τ ≃ R2/Uns is of the order of overlapping time of the middle-scale R2-eddies.
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Stationary energy spectra of counter- and pure super-flow turbulence

as a consequence of mutual-friction suppression due to

Counterflow decoupling of the normal- and super-fluid velocities

– Interaction (overlapping) time of scale R-eddies: τint = R/Uns (Uns – Counter-flow velocity)

– Mutual friction coupling time:

kind of the HVBK eqs:
∂us

∂t
+ . . . ≃ ακL

[

un(r, t)− us(r, t)
]

, (3)

∂un

∂t
+ . . . ≃ −α

ρs
ρn
κL

[

un(r, t)− us(r, t)
]

, (4)

uns ≡ un − un , Ωmf ≡
αρ

ρs
κL ,

∂uns

∂t
+ . . . ≃ −Ωmf

[

uns(r, t)
]

. (5)

– Counterflow decoupling parameter ζ(R) = 1/τintΩmf ⇒ ζ(k) =
kUns

Ωmk
Analytical theory of the coupling-decoupling processes, developed in Ref.[2] results in the equation for

the dimensionless decoupling function D(k), which depends on k via decoupling parameter ζ(k):

D(k) = D[ζ(k)] ≡
Ens(k,Uns)

Ens(k, 0)
=

arctan[ζ(k)]

ζ(k)
. (6)

Here Ens(k, Uns) = ⟨us(k) · un(k)⟩ is cross-correlation function of the normal- and superfluid velocities
in Fourier k-representation.

D(ζ) = 1− ζ2

3
, for ζ ≪ 1 , D(ζ×) =

1

2
, for ζ× ≈ 2 , D(ζ) =

π

2 ζ
, for ζ ≫ 1 . (7)
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k-dependence of the decoupling function D(k)
4
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ζmax = ζ(kmax) at the highest value of k,

kmax ≃ π/ℓ.

With ℓ ≃ 1/
√
L ≃ 1/(γLUns) this gives a

simple Uns-independent estimate of ζmax:

ζmax ≃
π

αns κ γ
L

∼ 40 ,

Estimate:

Dmin = D(ζmax) ≃ 0.04 ,
kmax

k×

≃ 20 ,

for T = 1.45K.

4D. Khomenko, V. S. Lvov, A. Pomyalov, and I. Procaccia, Counterflow decoupling in superfluid

turbulence. arXiv:1509.03566 (Sept. 2015)
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∂Es(k, t)
2 ∂t

+NLs = ακL
[

Ens(k, t)− Es(k, t)
]

≃ −ακLEs(k, t)
[

1−D(k)
]

, (8a)

∂En(k, t)
2 ∂t

+NLn =
ακLρ
ρs

[

Ens(k, t)− En(k, t)
]

≃ −ακLρ
ρs

[

En(k, t)
[

1−D(k)
]

. (8b)

Here NLs,n are nonlinear terms which we do not specified at this stage of the research. For k ≫ k×,

D(k) ≪ 1 and situation become similar to the equation for Es for the superfluid turbulence in 3He,

where mutual friction drastically suppresses the energy spectrum Es(k). Instead of classical Kolmogorov

spectrum E(k) ∝ k−5/3 Lvov, Nazarenko and Volovik (LNV) (JETP Letters, 2004) found the spectra

Es(k) ∝
1

k5/3
[

1
k2/3

± 1

k
2/3
cr

]2 , critical: ∝ k−3, kcr → ∞, subcrititical (with −), supercritical (+).

10^0 10^2 10^4 10^6
10−3

10−2

10−1

100

k

E
(k
)
k
5/

3
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Wei Guo (Florida) visualization experiment in counter-flow 4He turbulence 5

Heat flux: 10 mW/cm2

9-shot average

Drift time: 900 ms

Heat flux: 62 mW/cm
2

9-shot average

Drift time: 150 ms

Heat flux: 75 mW/cm
2

9-shot average

Drift time: 100 ms

No heat flux

T=1.83 K

9.5 mm

110 um

Heat flux: 200 mW/cm2

single shot

Drift time: 40 ms

trial-1

Heat flux: 200 mW/cm2

single shot 

Drift time: 40 ms

trial-2

150 mW/cm
225 mW/cm
300 mW/cm

2

2

2

r

Initial heat flux:

550 mW/cm2

Decay time: 0.1 s
1.0 s
3.0 s

~ r

~ r

~ r

0.83

0.67

(a)

(b)

results in transversal 2-nd order normal-fluid structure function S2(r) ∝ r, corresponding to E(k) ∝

k−2 !!. There are no reasonable explanation for this simple result! (if it is true?)

5A. Marakov, J. Gao, W. Guo, S. W. Van Sciver, G. G. Ihas, D. N. McKinsey, and W. F. Vinen,

Visualization of the normal-fluid turbulence in counterflowing superfluid 4He, Phys. Rev. B 91,

094503 (2015).
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Sketch of the superfluid turbulent energy spectra

Counter- & super-flow stationary spectra Late time asymptotics
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After switching off the counter- or super-flow the stationary energy spectrum of super-/counter-flow

(left panel) evolve to the spectrum, shown in right panel, switching on the energy flux toward quantum

vortex tangle after some delay.
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Numerical simulations of the classical turbulence decay by Sabra-shell model
After ensemble averaging over 104 realizations we got time dependence of

Left: total energy (with t−2 asymptotics) Right: Energy flux toward large k (with t−3 asymptotics)
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For K41 initial condition (IC) – solid blue lines there are no

delay in the energy dissipation. For LNV critical (red line)

and sub-critical (blue dashed line) there is clear delay with

sharp switching on, while for weakly localized IC (“exper-

imental” k−2 spectrum (green) and LNV super-critical IC

orange dashed lines) there is smooth switching on.
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Perspectives and Summary

These days it is very timing and principally important to perform and analyze DNS of
two-fluid, gradually damped (by the effective superfluid viscosity ν ′s) HVBK equations

[∂

∂t
+ (Us + us) ·∇− ν ′s∆

]

us −∇ps = ακ(un − us)L ,
[∂

∂t
+ (Un + un) ·∇− νn∆

]

us −∇pn = α
ρs
ρn
κ(us − un)L ,

for co- and counter-flow homogeneous superfluid turbulence in a periodic box with

measuring the stationary energy spectra Ess(k) = 4πk2
〈

|us(k)|2
〉

and Enn(k) =
4πk2

〈

|un(k)|2
〉

together with ×-velocity correlations Ens(k) = 4πk2 ⟨un(k) · us(k)⟩:
• In co-flow (Un = Us = 0) this will clarify the issue of intermittency, velocity coupling
and energy exchange between the normal- and super-fluid subsystems;

• In counter-flow (Uns = Un −Us ̸= 0) this will allows to find new energy spectra of
the counter-flowing super-fluid turbulence and to clarify the counter-flow decoupling
of the normal- and super-fluid turbulent velocity fluctuations.

Much more experimental, analytical and numerical studies are required
to achieve desired level of understanding of superfluid turbulence
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